*1 c Fermilab FERMILAB-TM-2192 December 2002

November 7, 2002

[. Mandrichenko, I. Terekhov, F. Wurthwein

Run IT Data Analysis on the Grid

Components and Interfaces
Abstract

In this document, we begin the technical design for the distributed RunIl computing
for CDF and DO. The present paper defines the three components of the data handling
area of Run II computing, namely the Data Handling System, the Storage System and
the Application. We outline their functionality and interaction between them. We
identify necessary and desirable elements of the interfaces.



1 Introduction and Motivation

Computing at DO and CDF (as is the case with most HEP experiments) is centered around
data processing. Consequently, the meta-computing systems of the two experiments are
expected to be built around data access and data handling. Since the experiments’ data
processing applications are fundamentally similar, (even though their frameworks and data
access infra-structures differ), the experiments gravitate towards similar systems such as
SAM and Enstore-dCache.

The two experiments early realized the importance of data handling and have been
devoting considerable effort to building and adopting data handling and storage systems. In
the Grid era, however, both applications and storage systems are evolving towards network-
capable data access. In addition, object-level (as opposed to file-level) data access becomes
popular in the Grid world. Relative to the initial requirements and existing design, the
principal roles of the data handling components are changing as well. Thus, in order to
architect a true Grid computing system for the experiments, it is imperative to develop
a modern, Grid perspective onto the Data Handling for the experiments. We need to
generalize the known concepts so as to include the new, emerging technologies, and make a
clear distinction of the principal responsibilities from desired features.

2 Components

In the present paper, we define the three high-level components of the Grid architecture
involved in data processing, see Figure 1.

e Application - user program designed to access (consume and/or produce or simply
move) data somewhere on the Grid. As a result of data processing, Application may
produce some new data and store it so that it will be accessible later by some other
application, and/or be “extracted” out of the grid environment upon completion to a
user specified location.

e Storage System - the entity which is responsible for storing data and providing access
to it to the Grid. Storage System is assumed to be associated with one of Grid
clusters. Storage systems span a wide range from “heavyweight” robotic storage to
“lightweight” local disk. It is essential for the Grid that these systems share a well
defined minimal set of common interfaces that are based on general protocols.

e Data Handling System - component of the Grid software responsible for maintaining
data on the Grid and delivering the data to the Application. It is assumed that one
of important functions of Data Handling system is to optimize access to the data
replicating data and moving data item replicas from one Storage System to another
as necessary.



Remote
Storage System

A Data Access
(read, write)

Data Handling
System

“._ Application

Data
replication,
delivery

Local
Storage System

—— data
— — control

Figure 1: The client-server relations among the components and data movement paths.

We define the three components in some detail, based on their properties and roles.
Furthermore, we define the high-level interfaces between them.

2.1 The Application

Before the application can run, it has to declare that it needs to process a set of data
items identified in terms of the experiment’s Metadata Name Space (MDNS). In addition,
it announces its capabilities to access data in terms of protocols that its I/O module sup-
ports. For example, an application that is only capable to read/write files from/to a locally
mounted disk will be distinguished from an application with RFIO support compiled into
it. To be precise, these announcements may actually be made in the job description, but
this is outside the scope of this document.

For input data, the URL’s expected by the applications point to a readable area
in a “local” storage system. Ideally, output data is handled symmetrically whereby the
application first receives a URL pointing to a writable area in storage system before sending
there the produced data. In practice, however, it is necessary to support the mode where
the application first writes data to a “scratch area”, i.e., to a volatile area not managed by
the DHS, and upon completion the DHS is requested to import the data file. In either case,
the application is responsible to generate meta-data describing the produced data, details



and extent depending on the experiments.

2.2 The Storage System

As the name implies, Storage System is responsible for storing data. Some Storage Systems
will be located, networking sense, near one of the data processing Clusters and therefore
data stored there will be locally accessible by the Application running on that Cluster.
Other Storage Systems will provide remote access to a variety of Clusters. The third class
of Storage Systems will only be available to the Data Handling System to retrieve files to a
remote “cache” (another Storage System). In any case, the access is done by a logical URL
such as the “/pnfs” path in Enstore.

The lifetime of a Storage System, and therefore its contents, is not constrained by
that of a job or affected by the job scheduler’s decisions. Thus, a sandboz created for a Grid
job for the duration of its execution is not a Storage System.

We assume that the contents of the Storage System, as well as information about
access rights etc., are publishable via the meta-data catalogue (Section 2.3) of the associated
experiment, i.e., the Storage Systems are public. The project disks at DO may be semi-
permanent but are private and therefore are not considered Storage System.

We recognize two major types of Storage Systems:

e Permanent Storage. Integrity of data stored in a permanent storage is assumed to
be “permanently” maintained by such storage system. Usually, tape-based systems
such as HPSS or Enstore (with dCache).

e Temporary Storage is used to store data for a limited time. Usually this is the
time required for one or more batch jobs to process the data. Also, temporary storage
can be used by the application to store produced output before the data is moved to
more permanent storage by the DHS. Usually, disk-based systems and systems with
limited capacity such as Disk Farm or SAM cache on a file server node are considered
as temporary storage.

It is not always possible to clearly distinguish between these two types of storage
systems, and phylosophically, there is no such thing as “permanent” storage, and therefore
there is no clear definition of terms “permanent” and “temporary”. Also, permanency of
particular storage system instance is largely determined by local support policies and the
role the instance plays in the overall system architecture rather than by the nature of the
storage system. However, for practical purposes, it is convenient to draw the distinction
between these two types and expect them to have slightly different functionality as described
in 3.1.



Storage Systems will vary in complexity from e.g., a single UNIX disk to e.g., an
Enstore system with dCache. A Storage System may “have a life in its own” such that it
may well decide to rearrange internal placement of the data (e.g., move data from its disk
cache to tape). In doing so, however, the Storage System is expected not to compromise
external access, i.e., it must maintain the validity of the replica catalogue maintained by
the Data Handling System. In particular, a Storage System will not permanently erase a
data file unless instructed to do so by the Data Handling.

A Storage System is typically protected by security, including Authentication, Au-
thorization and Accounting policies. Security is a property of the Storage System that
exists in addition to any security properties of the Data Handling. For example, a Storage
System may require a valid AFS token whereas the Data Handling system requires a valid
GSI proxy certificate. The credential used for the actual storage access may be that of the
initiating user or of the Data Handling System, in which case the Storage System must be
able to recognize the Data Handling as an entity (e.g. by a generic UNIX account such as
“sam” or by a service Kerberos principal).

Naturally, we desire Storage Systems to perform internal optimizations of the data
requests known to it. The Storage System will not attempt to optimize planned requests that
are known to the Job Scheduler and/or the Data Handling but not to the Storage System.
It is generally desirable for the Storage System to cooperate with the Data Handling to
optimize data access beyond currently active requests (i.e., with application data access in
progress). To achieve this goal, the Storage System may either provide reservation services
(or otherwise be able to receive notification of future data requests), or expose to the Data
Handling the economics of its internal data placement. The latter is exemplified by Enstore
which uses tapes for ultimate storage; the costs of reading from a mounted and unmounted
tape volumes differ dramatically and therefore Enstore exports file placement by tape to
the SAM system which can order accesses to Enstore in “space” (e.g by volume) and/or in
“time” (e.g. the whole tape at a time).

Thus, Storage System, if applicable and possible, may provide resource management
services. These are not for mere optimization; in the case of Enstore for D0 it was in fact
necessary to design resource optimization (including volume assignment exposure) into the
overall DO data handling system, based on the calculations that showed that unordered
tape access by the experiment would exceed the capacity of the tape-mounting robot.

2.3 The Data Handling Per Se

The Data Handling System (DHS) primarily maintains the meta-data name space (MDNS)
by allowing the Applications to create (and possibly remove) entries therein. The DHS
further provides the service of management of logical groupings of such entgries, by means of
datasets. The MDNS entries are data files or objects that are associated with the description
of the contained data (this is highly experiment-specific) as well as with physical locations



in one or more storage systems (experiment-independent). The physical locations as viewed
by the Data Handling System are in turn logical URL’s when seen by the Storage Systems,
as we explain below.

To retrieve input data, Application issues request to translate a set of entries in
the MDNS into a set of URL’s. Along with the identification of the required data items,
Application provides list of protocols it is capable of using to retrieve the data. In a pure
sequential model, these translations are done one at a time in the order decided by the
DHS. This is the first and foremost service provided by the DHS to the Application. One
or more URLs returned to the Application consist of:

e data transfer protocol (to date, perhaps the most common has been “local”)
e Storage System identification (perhaps in the form of “head” host address)

e Logical path to the data inside the Storage System

It is responsibility of the DHS to deliver data to one of Storage Systems accessible by
the Application (as described by the list of acceptable protocols) and, if possible, to optimize
data access by delivering the data as close as possible to the Application. Application’s
request for data translation blocks until the requested data item is delivered. Typically, the
Storage Systems accessible to the Applications running at a Cluster are different from those
that actually contain the data. In these cases, the service provided by the DHS is in moving
the data “closer” to the application, i.e. from “remote” Storage System to a “local” one.
Such a movement is referred to as caching. Please note that the Storage System acting as
a local cache is not a part of the DHS (see 1).

Implicit in the above described service of the DHS is the ability to not only recognize
various protocols supported by the application, but also relative cost for using them (see
the resource management discussion later).

When the Application stores data, the DHS service is largely symmetrical. Generally
Grid Application is not expected to know what cluster it is going to start at, and therefore,
what Storage Systems are accessible from there. That is why before the Application can
store the data, it requests the list of Storage System identifications available based on the list
of acceptable protocols. DHS returns such a list of Storage Systems with relative preferences
of using each of them. Among other factors, preferences will be based on proximity of the
Storage Systems and perhaps on their availability.

Application will choose one of Storage Systems returned by the DHS and deposit the
data item into the Storage System. Then it will notify DHS that new data item identified
by its MDNS ID is created and provide its URL in the Storage System.

Upon notification, the DHS will verify the meta-data (especially when the produced
data is intended to be shared by other collaborators) and if necessary initiate moving of the



data further to a final (“permanent”) Storage System, based on the Application’s preferences
and policies of the experiment.

An alternative way of storing the data is as follows. The Application may first
create an output file in a private area such as its sandbox, and after that issue a request to
store the file with a Storage System. The Application must wait until the DHS has reliably
stored the data into a Storage System (which need not be the final destination) and may
want to be notified when the data has reached the final destination Storage System.

Additional services are highly desirable although not critically necessary and are
irrespective of read vs. write; these are reliability, security and resource management.
Reliability features can be divided into those concerning a single Storage System and those
of overall nature. For a specific Storage System, the DHS will in general have another
level of retrials and timeouts when accessing the Storage System (on top of what it may
already provide). For the overall robustness, an intelligent DHS will automatically resort
to alternative replicas when the first replica attempted has failed.

For the resource management, the DHS will provide:

e Optimization of access to an individual Storage System by planning the requests for
it;

e Replica Selection in order to choose an optimal source or destination of the data,
based on the configured cost metric;

e Coordination of read access to a “local” Storage System by consumers, so as to min-
imize cache turnover rate.

For security, the DHS will provide translation between the AAA characteristics of
individual Storage Systems and the experiment’s Virtual Organization as a whole, i.e., it will
either use delegated user’s credentials, or present its own, when accessing a Storage System.
Thus, a Data Handling System may be a secured resource in itself, just like Storage Systems
always are.

We note in passing that security and resource management are often put into the
broader category of policies. We separate the two classes of services, however, because
resource management may become a critical, rather than a desirable, service (Section 2.2)
of the DHS that no other entity can provide.



3 Interfaces

Please refer to Figure 1 for our client-server model. In this Section, we describe the interfaces
of the two server components, the Storage System and the Data Handling System.

3.1 Storage System Interface

Storage systems are always servers, never clients in the context of data movement. They
neither initiate contact with data handling nor with the user application.

Storage System interface is expected to provide at least the following functions:

e File-level access to the stored data with semantics similar to one of UNIX File Sys-
tem: cp (get/put), ls. This functionality is required of any Storage System. Also,
temporary storage systems, and systems with limited capacity are expected to provide
functionality to remove data and release space occupied by the data and to query
space availability.

e Record-level access as a subset of POSIX API: open(), read(), write(), seek(), close()
functions. This suit of functions seems to be highly desirable, but not always necessary
for the Storage System to provide.

e A storage system may provide multiple types of interfaces that implement the above,
and distinguish themselves in the level of “persistency” or “permanence” of the stored
data. The level of permanence of each of them needs to be exposed via the interface.

e Depending on the nature of the Storage System, when applicable, it may expose
some resource management functionality via its interface. Example functionalities
are advance space reservation and file locking/unlocking. However, in the Stage 1
of the project it seems to be useful and reasonable to assume that Storage Systems
provide abundant resources so that such functionality is not required.

We explicitly note that a complex storage system may internally use DH function-
ality like MDNS as well as replication in order to fully integrate static as well as dynamic
caches with robotic storage, for example. It is up to the local owner/operator of a given
storage facility to decide to what extent they are interested in exposing modular compo-
nents of their complex storage system to the global data handling, or expose it only as an
integrated system.



3.2 Data Handling System Interface

Data Handling System (DH) is supposed to be a client of Storage Systems and act as a
server for the Application. Four major functions of DH exposed through its interface are:

e DH maintains meta-data name space (MDNS) by allowing the Application to create
new data items and data sets and enter them along with their physical location into
MDNS by notifying DHS. It is assumed that before making new entry, the Application
delivers the data item into one of Storage Systems, known to DHS and then gives DHS
URL pointing to the location of the data item.

e DH serves Application request to deliver input data by translating data item identi-
fication expressed in terms of MDNS into a URL referencing actual location of the
data file in one or more Storage Systems.

e Application is supposed to notify DHS when requested data item, previously delivered
by DHS to the application is not needed any more. Until then, the data item will
be considered by DHS as “locked” and will not be removed by DHS. However, if the
application fails to notify DHS the data will be considered “released” by DHS after
some reasonably long time-out interval.

e DHS accepts Application requests for data movement between Storage Systems.

4 Summary

Based on our experience and understanding of current DO and CDF computing as well as
their forseeable development into Grid era, we have analysed data handling process. We
have identified three major components of Run II grid computing involved in data handling:
Data Handling System, Storage System and Application. We have presenetd high level
overview of their functionality, interaction between these components and outlined major
elements of their interfaces. We identified necessary and desirable elements of components
interfaces. Conceptually, most important difference between the earlier views of Run II
computing and what is presented here is that the Data Handling System is now decoupled
from what was previously considered to be its internal cache. Such cache is now viewed as
a specific case of a Storage System. We believe this makes the functionality of DHS more
clearly defined and therefore allows for simpler design of DHS.



